Function
| Static Public Summary | ||
| public |
doouble normalisation score functon generator K + (1-K) (count / max count) |
|
| public |
binary tf (1) |
|
| public |
count(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number raw term count |
|
| public |
async evaluate(system: System, parser: QueryParser, cases: object): object Evaluate an IR system. |
|
| public |
extractObjectValues(document: object, fields: object, callback: function) extract values from a document object |
|
| public |
inverseDocumentFrequency(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number idf - number of documents / number of documents with term |
|
| public |
inverseDocumentFrequencyMax(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number idf max |
|
| public |
inverseDocumentFrequencySmooth(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number idf smooth |
|
| public |
logNormal(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number 1 + log(count) |
|
| public |
naiveBayes(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number anonymous function - description |
|
| public |
probabilisticInverseDocumentFrequency(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number probailistic idf |
|
| public |
termFrequency(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number term frequency (raw cunt / total raw count) |
|
| public |
unary idf (1) |
|
Static Public
public augmented(K: number): function source
import {augmented} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'doouble normalisation score functon generator K + (1-K) (count / max count)
Params:
| Name | Type | Attribute | Description |
| K | number |
|
augment weight |
public binary(): number source
import {binary} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'binary tf (1)
public count(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number source
import {count} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'raw term count
Params:
| Name | Type | Attribute | Description |
| t | number | number of times term occurs in document |
|
| sum_t | number | sum of t for all terms in document |
|
| max_t | number | maximum number of times any term occurs in document |
|
| sum_dt | number | total number of terms in document |
|
| sum_all | number | total number of terms in document collection |
|
| count_d | number | total number of documents |
|
| count_dt | number | total number of documents with term |
|
| max_dt | number | maximum number of documents per term |
public async evaluate(system: System, parser: QueryParser, cases: object): object source
import evaluate from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/evaluate.js'Evaluate an IR system.
Params:
| Name | Type | Attribute | Description |
| system | System | description |
|
| parser | QueryParser | description |
|
| cases | object | description |
public extractObjectValues(document: object, fields: object, callback: function) source
import extractObjectValues from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/misc/extractObjectValues.js'extract values from a document object
public inverseDocumentFrequency(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number source
import {inverseDocumentFrequency} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'idf - number of documents / number of documents with term
Params:
| Name | Type | Attribute | Description |
| t | number | number of times term occurs in document |
|
| sum_t | number | sum of t for all terms in document |
|
| max_t | number | maximum number of times any term occurs in document |
|
| sum_dt | number | total number of terms in document |
|
| sum_all | number | total number of terms in document collection |
|
| count_d | number | total number of documents |
|
| count_dt | number | total number of documents with term |
|
| max_dt | number | maximum number of documents per term |
public inverseDocumentFrequencyMax(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number source
import {inverseDocumentFrequencyMax} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'idf max
Params:
| Name | Type | Attribute | Description |
| t | number | number of times term occurs in document |
|
| sum_t | number | sum of t for all terms in document |
|
| max_t | number | maximum number of times any term occurs in document |
|
| sum_dt | number | total number of terms in document |
|
| sum_all | number | total number of terms in document collection |
|
| count_d | number | total number of documents |
|
| count_dt | number | total number of documents with term |
|
| max_dt | number | maximum number of documents per term |
public inverseDocumentFrequencySmooth(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number source
import {inverseDocumentFrequencySmooth} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'idf smooth
Params:
| Name | Type | Attribute | Description |
| t | number | number of times term occurs in document |
|
| sum_t | number | sum of t for all terms in document |
|
| max_t | number | maximum number of times any term occurs in document |
|
| sum_dt | number | total number of terms in document |
|
| sum_all | number | total number of terms in document collection |
|
| count_d | number | total number of documents |
|
| count_dt | number | total number of documents with term |
|
| max_dt | number | maximum number of documents per term |
public logNormal(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number source
import {logNormal} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'1 + log(count)
Params:
| Name | Type | Attribute | Description |
| t | number | number of times term occurs in document |
|
| sum_t | number | sum of t for all terms in document |
|
| max_t | number | maximum number of times any term occurs in document |
|
| sum_dt | number | total number of terms in document |
|
| sum_all | number | total number of terms in document collection |
|
| count_d | number | total number of documents |
|
| count_dt | number | total number of documents with term |
|
| max_dt | number | maximum number of documents per term |
public naiveBayes(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number source
import {naiveBayes} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'anonymous function - description
Params:
| Name | Type | Attribute | Description |
| t | number | number of times term occurs in document |
|
| sum_t | number | sum of t for all terms in document |
|
| max_t | number | maximum number of times any term occurs in document |
|
| sum_dt | number | total number of terms in document |
|
| sum_all | number | total number of terms in document collection |
|
| count_d | number | total number of documents |
|
| count_dt | number | total number of documents with term |
|
| max_dt | number | maximum number of documents per term |
public probabilisticInverseDocumentFrequency(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number source
import {probabilisticInverseDocumentFrequency} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'probailistic idf
Params:
| Name | Type | Attribute | Description |
| t | number | number of times term occurs in document |
|
| sum_t | number | sum of t for all terms in document |
|
| max_t | number | maximum number of times any term occurs in document |
|
| sum_dt | number | total number of terms in document |
|
| sum_all | number | total number of terms in document collection |
|
| count_d | number | total number of documents |
|
| count_dt | number | total number of documents with term |
|
| max_dt | number | maximum number of documents per term |
public termFrequency(t: number, sum_t: number, max_t: number, sum_dt: number, sum_all: number, count_d: number, count_dt: number, max_dt: number): number source
import {termFrequency} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'term frequency (raw cunt / total raw count)
Params:
| Name | Type | Attribute | Description |
| t | number | number of times term occurs in document |
|
| sum_t | number | sum of t for all terms in document |
|
| max_t | number | maximum number of times any term occurs in document |
|
| sum_dt | number | total number of terms in document |
|
| sum_all | number | total number of terms in document collection |
|
| count_d | number | total number of documents |
|
| count_dt | number | total number of documents with term |
|
| max_dt | number | maximum number of documents per term |
public unary(): number source
import {unary} from 'information-retrieval-boilerplate/node-information-retrieval-boilerplate/src/scores/index.js'unary idf (1)
