All files / src/scores index.js

100% Statements 23/23
100% Branches 1/1
100% Functions 12/12
100% Lines 23/23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184                9x   2x                               9x   2x                               9x   2x                               9x   2x                   9x   2x   4x                                 9x   116x               9x   2x                               9x   2x                               9x   2x                               9x     2x                               9x     2x    
"use strict";
 
 
/**
 * binary tf (1)
 *
 * @return {number}          calculated score
 */
module.exports.binary = function ()
{
  return 1;
};
 
/**
 * raw term count
 *
 * @param  {number} t        number of times term occurs in document
 * @param  {number} sum_t    sum of t for all terms in document
 * @param  {number} max_t    maximum number of times any term occurs in document
 * @param  {number} sum_dt   total number of terms in document
 * @param  {number} sum_all  total number of terms in document collection
 * @param  {number} count_d  total number of documents
 * @param  {number} count_dt total number of documents with term
 * @param  {number} max_dt   maximum number of documents per term
 * @return {number}          calculated score
 */
module.exports.count = function (t, sum_t, max_t, sum_dt, sum_all, count_d, count_dt, max_dt)
{
  return t;
};
 
/**
 * term frequency (raw cunt / total raw count)
 *
 * @param  {number} t        number of times term occurs in document
 * @param  {number} sum_t    sum of t for all terms in document
 * @param  {number} max_t    maximum number of times any term occurs in document
 * @param  {number} sum_dt   total number of terms in document
 * @param  {number} sum_all  total number of terms in document collection
 * @param  {number} count_d  total number of documents
 * @param  {number} count_dt total number of documents with term
 * @param  {number} max_dt   maximum number of documents per term
 * @return {number}          calculated score
 */
module.exports.termFrequency = function (t, sum_t, max_t, sum_dt, sum_all, count_d, count_dt, max_dt)
{
  return t / sum_t;
};
 
/**
 * 1 + log(count)
 *
 * @param  {number} t        number of times term occurs in document
 * @param  {number} sum_t    sum of t for all terms in document
 * @param  {number} max_t    maximum number of times any term occurs in document
 * @param  {number} sum_dt   total number of terms in document
 * @param  {number} sum_all  total number of terms in document collection
 * @param  {number} count_d  total number of documents
 * @param  {number} count_dt total number of documents with term
 * @param  {number} max_dt   maximum number of documents per term
 * @return {number}          calculated score
 */
module.exports.logNormal = function (t, sum_t, max_t, sum_dt, sum_all, count_d, count_dt, max_dt)
{
  return 1 + Math.log(t);
};
 
 
/**
 * doouble normalisation score functon generator K + (1-K) (count / max count)
 *
 * @param  {number} [K=0.5] augment weight
 * @return {function}         score function
 */
module.exports.augmented = function (K = 0.5)
{
  return function (t, sum_t, max_t, sum_dt, sum_all, count_d, count_dt, max_dt)
  {
    return K + K * (t / max_t);
  };
};
 
/**
 * anonymous function - description
 *
 * @param  {number} t        number of times term occurs in document
 * @param  {number} sum_t    sum of t for all terms in document
 * @param  {number} max_t    maximum number of times any term occurs in document
 * @param  {number} sum_dt   total number of terms in document
 * @param  {number} sum_all  total number of terms in document collection
 * @param  {number} count_d  total number of documents
 * @param  {number} count_dt total number of documents with term
 * @param  {number} max_dt   maximum number of documents per term
 * @return {number}          calculated score
 */
module.exports.naiveBayes = function (t, sum_t, max_t, sum_dt, sum_all, count_d, count_dt, max_dt)
{
  return sum_all / sum_t / count_d;
};
 
/**
 * unary idf (1)
 *
 * @return {number}          calculated score
 */
module.exports.unary = function ()
{
  return 1;
};
 
/**
 * idf - number of documents / number of documents with term
 *
 * @param  {number} t        number of times term occurs in document
 * @param  {number} sum_t    sum of t for all terms in document
 * @param  {number} max_t    maximum number of times any term occurs in document
 * @param  {number} sum_dt   total number of terms in document
 * @param  {number} sum_all  total number of terms in document collection
 * @param  {number} count_d  total number of documents
 * @param  {number} count_dt total number of documents with term
 * @param  {number} max_dt   maximum number of documents per term
 * @return {number}          calculated score
 */
module.exports.inverseDocumentFrequency = function (t, sum_t, max_t, sum_dt, sum_all, count_d, count_dt, max_dt)
{
  return Math.log(count_d / count_dt);
};
 
/**
 * idf smooth
 *
 * @param  {number} t        number of times term occurs in document
 * @param  {number} sum_t    sum of t for all terms in document
 * @param  {number} max_t    maximum number of times any term occurs in document
 * @param  {number} sum_dt   total number of terms in document
 * @param  {number} sum_all  total number of terms in document collection
 * @param  {number} count_d  total number of documents
 * @param  {number} count_dt total number of documents with term
 * @param  {number} max_dt   maximum number of documents per term
 * @return {number}          calculated score
 */
module.exports.inverseDocumentFrequencySmooth = function (t, sum_t, max_t, sum_dt, sum_all, count_d, count_dt, max_dt)
{
  return Math.log(1 + count_d / count_dt);
};
 
/**
 * idf max
 *
 * @param  {number} t        number of times term occurs in document
 * @param  {number} sum_t    sum of t for all terms in document
 * @param  {number} max_t    maximum number of times any term occurs in document
 * @param  {number} sum_dt   total number of terms in document
 * @param  {number} sum_all  total number of terms in document collection
 * @param  {number} count_d  total number of documents
 * @param  {number} count_dt total number of documents with term
 * @param  {number} max_dt   maximum number of documents per term
 * @return {number}          calculated score
 */
module.exports.inverseDocumentFrequencyMax = function (t, sum_t, max_t, sum_dt, sum_all, count_d, count_dt, max_dt)
{
  // added a small constant here as 0 score is a special non-result case in the system
  return Math.log(max_dt / (1 + count_dt) + 1e-10);
};
 
/**
 * probailistic idf
 *
 * @param  {number} t        number of times term occurs in document
 * @param  {number} sum_t    sum of t for all terms in document
 * @param  {number} max_t    maximum number of times any term occurs in document
 * @param  {number} sum_dt   total number of terms in document
 * @param  {number} sum_all  total number of terms in document collection
 * @param  {number} count_d  total number of documents
 * @param  {number} count_dt total number of documents with term
 * @param  {number} max_dt   maximum number of documents per term
 * @return {number}          calculated score
 */
module.exports.probabilisticInverseDocumentFrequency = function (t, sum_t, max_t, sum_dt, sum_all, count_d, count_dt, max_dt)
{
  // added a small constant here as 0 score is a special non-result case in the system
  return Math.log((count_d - count_dt) / (count_dt) + 1e-10);
};